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ABSTRACT
Code summarization aims to generate brief natural language de-

scriptions for source codes. The state-of-the-art approaches follow

a transformer-based encoder-decoder architecture. As the source

code is highly structured and follows strict grammars, its Abstract

Syntax Tree (AST) is widely used for encoding structural infor-

mation. However, ASTs are much longer than the corresponding

source code. Existing approaches ignore the size constraint and

simply feed the whole linearized AST into the encoders. We argue

that such a simple process makes it difficult to extract the truly use-

ful dependency relations from the overlong input sequence. It also

incurs significant computational overhead since each node needs

to apply self-attention to all other nodes in the AST. To encode

the AST more effectively and efficiently, we propose AST-Trans

in this paper which exploits two types of node relationships in

the AST: ancestor-descendant and sibling relationships. It applies

the tree-structured attention to dynamically allocate weights for

relevant nodes and exclude irrelevant nodes based on these two

relationships. We further propose an efficient implementation to

support fast parallel computation for tree-structure attention. On

the two code summarization datasets, experimental results show

that AST-Trans significantly outperforms the state-of-the-arts while

being times more efficient than standard transformers
1
.
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All the codes and data are available at https://github.com/zetang94/ICSE2022_AST_

Trans.git
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1 INTRODUCTION
The summary of source code is a brief natural language description

explaining the purpose of the code [29]. The code to be summarized

can be with different units. In this work, we focus on summarizing

the subroutines or defined methods in a program.

Previous studies have shown that such a short description can

assist program developers to quickly digest the codewithout travers-

ing over it themselves [43]. Nonetheless, maintaining high-quality

code summaries requires expensive manual labor in reality. In many

projects, these summaries are often mismatched, missing or out-

dated which slow down the developing progress [18]. Automatic

code summarization can greatly save developers’ time by avoiding

writing such summaries manually for every single code snippet.

The traditional methods utilized handcrafted rules like Software

Word-Usage Model (SWUM) [43] or stereotypes [30] to synthe-

size the code summaries. However, when identifiers or methods

are poorly named, they cannot extract accurate keywords to pro-

duce good summaries. Some used Information Retrieval (IR) tech-

niques [13, 14] to mine summaries from similar existing code banks

which, unfortunately, cannot generalize to unseen code snippets

with different functions.

Recently, with the development of open source platforms such as

Github, more and more data for code summarization can be easily

extracted from online resources. Data-driven strategies based on
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float relu(float x){
    return x < 0 ? 0 : x
}

AST
code

return 0 if x<0, else return x 
itself.

Ancestor-descendant
Sibling

orelse

NameLoad(x)

body

constant(0)

Compare

constant(0)LtNameLoad(x)

IfExp

Return

summary

Figure 1: Example of code-AST-summary triples. We mainly need
to understand the ancestor-descendent and sibling relationships in
the AST to generate a summary.

neural networks start to raise more and more attention [20, 37–

39, 56]. Current state-of-the-arts all follow the Transformer-based

encoder-decoder architecture [5, 8, 45, 48, 49] and can be trained

end-to-end with code-summary pairs. Since the source code is

highly structured and follows strict programming language gram-

mars, a common practice is to also leverage the Abstract Syntax

Tree (AST) to help the encoder digest the structured information.

The AST is usually linearized by different algorithms like pre-order

traversal [21], structure-based traversal (SBT) [18] and path decom-

position [4], then fed into the encoder. Several works also proposed

architectures specific for tree encoding like tree-LSTM [11, 51].

However, the linearized ASTs, as containing additional struc-

tured information, are much longer than their corresponding source

code sequence. Some linearization algorithms can further increase

the length. For example, linearizing with SBT usually makes the

size times longer. This makes the model extremely difficult to accu-

rately detect useful dependency relations from the overlong input

sequence
2
. Moreover, it brings significant computational overhead,

especially for state-of-the-art Transformer-based models where

the number of self-attention operations grows quadratically with

the sequence length. Encoding ASTs with tree-based models like

tree-LSTM will incur extra complexity because it needs to traverse

the whole tree to obtain the state of each node.

In this work, we assume that the state of a node in the AST is

affected most by its (1) ancestor-descendent nodes, which represent

the hierarchical relationship across different blocks, and (2) sibling

nodes, which represent the temporal relationship within one block.

We show an example of code summarization in Figure 1. As can be

seen, we need the ancestor-descendent relationship to understand

the high-level procedure, and the sibling relationship to understand

the low-level details within a block. Capturing these two relation-

ships are enough for producing the summary and modelling the

full attention among all nodes is unnecessary.

Based on this intuition, we propose AST-Trans, a simple variant

of the Transformer model to efficiently handle the tree-structured

AST. AST-Trans exploits ancestor-descendant and sibling relation-

ship matrices to represent the tree-structure, and uses these ma-

trices to dynamically exclude irrelevant nodes in different self-

attention layers. The absolute position embedding from the original

Transformer is replaced with relative position embeddings defined

2
Indeed, encoding the overlong AST with SBT even underperforms directly encoding

the source code when using Transformer with relative position embeddings [1].

by the two relationship matrices to better model the dependency.

We further describe several implementations of the proposed AST-

Trans and have a comprehensive analysis of their computational

complexity. In short, the contributions of this paper are as below:

• We propose AST-Trans that can efficiently encode long AST

sequences with linear complexity, in contrast with the qua-

dratic complexity of the standard Transformer.

• We perform a comprehensive analysis, with both theoretical

and empirical evidences, on the computational complexity

of different implementations.

• We validate our proposed model on two datasets of Java and

Python. Experimental results show that AST-Trans outper-

forms the state-of-the-arts by a substantial margin.

• We compare representative methods for AST encoding and

discuss their pros and cons.

Paper Organization The remainder of this paper is organized

as follows. Section 2 presents background knowledge on the Trans-

former and AST. Section 3 elaborates on the details of AST-Trans,

section 4 presents its different implementation and the complexity

is analyzed in section 5. Section 6 explains the experimental setup

and analyzes the results. Section 7 discusses threats to validity. Sec-

tion 8 surveys the related work. Finally, section 9 concludes the

paper and points out future research directions.

2 BACKGROUND
Transformer. The Transformer architecture was initially proposed

for neural machine translation [49]. It consists of multi-head stacked

encoder and decoder layers. In each encoder stack, the inputs first

flow through a self-attention sublayer, and then are fed into a

position-wise feed-forward network followed by a layer normaliza-

tion. The decoder has a set of the cross-attention layers to help the

decoder focus on relevant parts of the input sequence. The Trans-

former architecture removes the recurrence mechanism in favor of

the self-attention. As each word in a sentence simultaneously flows

through the encoder and decoder stack, the model itself does not

have any sense of the word order. Therefore, a position embedding

is added to each word embedding to inform the order information.

Abstract Syntax Tree (AST). An Abstract Syntax Tree (AST)

uniquely represents a source code snippet in a given language

and grammar [4]. The leaves of the tree are terminals, usually re-

ferring to variables, types and method names. The non-leaf nodes

are non-terminals and represent a restricted set of structures in the

programming language, e.g., loops, expressions, and variable decla-

rations. For example, in Figure 1, variables (such as NameLoad(x))
are represented as terminals of AST. Syntactic structures (such as

Compare) are represented as non-terminals. Since the variable and

method names can be rather freely defined, directly processing the

source code can be challenging. Its corresponding AST, due to its

strict structure, often serves as substitute when encoding the source

code.

3 AST-TRANS
This section details our proposed AST-Trans. For an AST, it will

be firstly linearized into a sequence. Then the ancestor-descendent

and sibling relationships among its nodes will be denoted through
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Table 1: Linearized AST of the tree in Fig 1 with POT,SBT and PD.

Methods Linearized AST sequence

POT

Return IfExp Compare NameLoad(x) Lt constant(0) body constant(0) orelse

NameLoad(x)

SBT

( Return ( IfExp ( Compare ( constant(0) ) constant(0) ( Lt ) Lt ( NameLoad(x)

) NameLoad(x) ) Compare ( body ( constant(0) ) constant(0) ) body ( orelse

( NameLoad(x) ) NameLoad(x) ) orelse ) IfExp ) Return

PD

Path1: Path1: Lt Compare constant(0)

Path2: NameLoad(x) Compare constant(0)

Path3: Path3: constant(0) Compare IfExp body constant(0)

...

two specific matrices. Based on the matrices, we replace the stan-

dard self-attention with tree-structured attention to better model

these two relationships. Irrelevant nodes are dynamically ruled

out to reduce computational cost. We will first introduce different

linearization methods (section 3.1), then explain the construction

of two relationship matrices (section 3.2), and finally present the

tree-structure attention to utilize the matrices(section 3.3).

3.1 AST Linearization
In order to encode the tree-shaped AST, it first needs to be converted

into a sequence with a linearization method. There are the three

most representative linearization methods used in current works:

(1) Pre-order Traversal (POT): It visits the tree nodes with pre-

order traversal. Sequences obtained by pre-order traversal

are lossy since the original ASTs cannot be unambiguously

reconstructed back from them.

(2) Structure-based Traversal (SBT): It adds additional brack-

ets [18] to indicate the parental-descendent relationship such

that each sequence can be unambiguously mapped back to

the AST, but it also doubles the size of the linearized se-

quence.

(3) Path Decomposition (PD): It represents the AST by concate-

nating the path between two random leaf nodes. The total

number of paths can be too large for computing and there-

fore random sampling is needed [4].

Table 1 shows the AST in Figure 1 linearized with the above

three different methods. For POT and SBT, the linearized trees

can be directly fed into the encoder. For PD, the average total

number of paths can be over 200, concatenating them all to train

is infeasible [4]. In practice, mean pooling is run over the states

of each path such that each path has one unique representation.

The decoder only attends to these unique representations of paths

instead of specific nodes within paths. This can affect the model

when copying user-defined names (in leaf nodes) is needed.

We adopt the simplest POT linearization for our model. We

show that it has already achieved SOTA results and more complex

linearizationmethods like SBT do not help. PD does not apply to our

model since it treats one path as a whole.Wewill show in section 6.3

that this leads to poor performance in code summarization.

3.2 Relationship Matrices
We define two kinds of relationships between nodes in the tree that

we care about: ancestor-descendant (𝐴) and sibling (𝑆) relationships.

The former represents the hierarchical information across blocks,

and the latter represents the temporal information within one block.

Tree Structure Relationship

Relationship
 Matrices

ADD X Y
ADD 0 -1 -2

X 1 0 -1
Y 2 1 0

ADD X YADD X Y ADD

X Y

ADD

X Y

ADD X Y
ADD 0 -1 -1

X 1 0 ∞
Y 1 ∞ 0

ADD X Y
ADD 0 ∞ ∞

X ∞ 0 -1
Y ∞ 1 0

A
S
A
S

A S

Linear Relationship

Figure 2: Example of generating position matrices for ancestor-
descendent (A) and sibling relationship (S). Position matrix gener-
ated from the linear relationship is used in standard Transformers.

Specifically, two nodes have the ancestor-descendant relationship if

there exists a directed path from root node that can traverse through

them. Two nodes have the sibling relationship if they share the

same parent node.

We use two position matrices 𝐴𝑁×𝑁 and 𝑆𝑁×𝑁 to represent

the ancestor-descendent and sibling relationships respectively. 𝑁

is the total number of nodes in AST. We denote the 𝑖th node in

the linearized AST as 𝑛𝑖 . 𝐴𝑖 𝑗 is the distance of the shortest path

between 𝑛𝑖 and 𝑛 𝑗 in the AST. 𝑆𝑖 𝑗 is horizontal sibling distance

between 𝑛𝑖 and 𝑛 𝑗 in the AST if they satisfy the sibling relationship.

If one relationship is not satisfied, its value in the matrix will be

infinity. Note that we consider the relative relationship between two
nodes, which means 𝐴𝑖 𝑗 = −𝐴 𝑗𝑖 and 𝑆𝑖 𝑗 = −𝑆 𝑗𝑖 if a relationship

exists between 𝑛𝑖 and 𝑛 𝑗 .

Formally, we use SPD(𝑖, 𝑗 ) and SID(𝑖, 𝑗 ) to denote the Shorted
Path Distance and horizontal SIbling Distance between 𝑛𝑖 and 𝑛 𝑗
in the AST. The values in the relationship matrices are defined as:

𝐴𝑖 𝑗 =

{
SPD(𝑖, 𝑗) if |SPD(𝑖, 𝑗) | ≤ 𝑃

∞ otherwise

𝑆𝑖 𝑗 =

{
SID(𝑖, 𝑗) if |SID(𝑖, 𝑗) | ≤ 𝑃

∞ otherwise

(1)

𝑃 is a pre-defined threshold and nodes with relative distance

beyond 𝑃 will be ignored. We hypothesize that precise relative dis-

tance is not useful beyond a certain range. It can both constrain the

computation complexity within a constant range and save memory

space for storing the relative position embeddings. Figure 2 shows

an example of generating matrix 𝐴 and 𝑆 , in comparison with the

position matrix generated from a linear relationship, which is used

in standard Transformers. In the next section, we will introduce

how to use these two matrices to dynamically incorporate such

relationship information through a tree-structured attention.

3.3 Tree-Structured Attention
Tree-structured attention is built on the standard self-attention

with relative position embeddings and disentangled attention. It

replaces the relative position embeddings derived from the linear

relationship into the two matrices derived from the tree structure.

Self-Attention. Standard self-attention transforms the input

sequence x = (𝑥1, . . . , 𝑥𝑛) (𝑥𝑖 ∈ R𝑑 which stands for the embedding

of 𝑛𝑖 ) into a sequence of output vectors o = (𝑜1, . . . , 𝑜𝑛) (𝑜𝑖 ∈ R𝑑 ).
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The single-head self-attention [49] can be formulated as:

𝜶 𝒊𝒋 =
𝑸 (𝑥𝑖 )𝑲 (𝑥 𝑗 )⊺√

𝑑

𝑜𝑖 =

𝑛∑
𝑗=1

𝜎 (𝜶 𝒊𝒋)𝑽 (𝑥 𝑗 )
(2)

where 𝑸,𝑲 : R𝑑 → R𝑚 are query and key functions respectively,

𝑽 : R𝑑 → R𝑑 is a value function, 𝜎 is a scoring function (e.g.

softmax or hardmax).

Relative position embedding. Eq 2 is a content-only attention
without any position information. The initial Transformer model

uses absolute position embeddings to inform about the position.

Shaw et al. [36] proposed replacing them with relative position

embeddings, which has shown more effective in code summariza-

tion tasks [1]. The relative position 𝛿 (𝑖, 𝑗) reflects the pairwise

distance between 𝑛𝑖 and 𝑛 𝑗 . Denote 𝑃 as the max relative distance,

𝛿 (𝑖, 𝑗) ∈ [0, 2𝑃] can be defined as:

𝛿 (𝑖, 𝑗) =


0 for 𝑖 − 𝑗 ≤ −𝑃
2𝑃 for 𝑖 − 𝑗 ≥ 𝑃

𝑖 − 𝑗 + 𝑃 others.

(3)

In this way, we can map each relative distance into an embedding

representation. The relative position embeddings can be added on

top of Eq 2 to inform the pairwise distance.

Disentangled Attention. Disentangled Attention [16] uses rel-

ative position embedding as bias in self-attention process. Each

word is represented using two vectors that encode its content and

relative position in an disentangled way. The attention computa-

tion is then divided into three parts: content-to-content, content-

to-position and position-to-content, defined as:

𝛼𝑖, 𝑗 = 𝑸 (𝑥𝑖 )𝑲 (𝑥 𝑗 )⊺︸           ︷︷           ︸
content-to-content

+ 𝑸 (𝑥𝑖 )𝑲𝑷
𝛿 (𝑖, 𝑗)

⊺︸           ︷︷           ︸
content-to-position

+ 𝑸𝑷
𝜹 (𝒋,𝒊)𝑲 (𝑥 𝑗 )⊺︸            ︷︷            ︸

position-to-content

(4)

where 𝑸𝑷 ,𝑲𝑷 ∈ R(2𝑃+1)×𝑚 represent the query and key projec-

tion matrices of relative positions. 𝑲𝑷
𝛿 (𝑖, 𝑗) is the 𝛿 (𝑖, 𝑗)-th row of

𝑲𝑷
and 𝑸𝑷

𝛿 (𝑖, 𝑗) is the 𝛿 (𝑖, 𝑗)-th row of 𝑸𝑷
respectively. The last two

items, i.e., content-to-position and position-to-content, are used to

measure the relative positions between a word pair.

Besides, for content-to-position computation, as all possible rel-

ative positions are always in [0, 2𝑃], the scores of query content

𝑸 (𝑥) to all key positions 𝑲𝑷
can be first computed as 𝑸 (𝑥)𝑲𝑷 ⊺

,

and then gathered into 𝛼 with 𝛿 (𝑖, 𝑗) as index. In this way, The

relative position embedding can be reused for all query contents

and thus reduce the space complexity to 𝑂 (2𝑃𝑚) .
Attentionwith Tree-StructuredRelationships.Ourmethod

essentially replaces 𝛿 (𝑖, 𝑗), the relative distance defined under the

linear relationship, with 𝛿𝑅 (𝑖, 𝑗) where 𝑅 stands for either the

ancestor-descendent relationship 𝐴 or the sibling relationship 𝑆 in

the tree structure. 𝛿𝑅 (𝑖, 𝑗) is defined as:

𝛿𝑅 (𝑖, 𝑗) =
{
𝑅𝑖 𝑗 + 𝑃 + 1 if 𝑅𝑖 𝑗 ∈ [−𝑃, 𝑃]

0 if 𝑅𝑖 𝑗 = ∞ (5)

𝑅𝑖 𝑗 refers to either𝐴𝑖 𝑗 or 𝑆𝑖 𝑗 defined in Eq 1. As there are two kinds

of relationships, we consider only one relationship in each head so

that it will not add any additional parameter on top of the standard
Transformer. ℎ𝐴 heads will use 𝛿𝐴 (𝑖, 𝑗) and the rest ℎ𝑆 heads will

use 𝛿𝑆 (𝑖, 𝑗). Information from the two relationships will be merged

together through multi-head attention. We then replace 𝛿 (𝑖, 𝑗) in
Eq 4 with 𝛿𝑅 (𝑖, 𝑗) in Formula 5, and apply a scaling factor of

1√
3𝑑

on

𝛼𝑖, 𝑗 (because it has 3 items). The final output vector is computed as

in Eq (6), where 𝑽 𝑷
represents the value project matrix of relative

distances and 𝑽 𝑷
𝑹𝒊𝒋

is the 𝑅𝑖 𝑗 -th row of 𝑽 𝑷
.

𝑜𝑖 =

𝑗 ∈{ 𝑗 |𝛿𝑅 (𝑖, 𝑗)>0}∑
𝑗

𝜎 (
𝛼𝑖, 𝑗√
3𝑑

) (𝑽 (𝑥 𝑗 ) + 𝑽 𝑷
𝑹𝒊𝒋

) (6)

Note that we only compute the attention weights for node pairs
where 𝛿𝑅 (𝑖, 𝑗) > 0), which is similar to the idea of sliding win-

dow [7] and can reduce the time and space complexity of the self-

attention process. We will discuss its implementation and analyze

its complexity in sections 4 and 5 respectively.

4 EFFICIENT IMPLEMENTATION
A limitation of the full attention mechanism in standard Transform-

ers is the computational and memory cost that grows quadratically

with the sequence length. AST-Trans we proposed can alleviate

this problem since the attention scores only need to be computed

for node pairs where 𝛿𝑅 (𝑖, 𝑗) > 0. Nevertheless, a memory and
computational efficient implementation of AST-Trans that supports
parallel processing is non-trivial. The essence of AST-Trans is similar

to previous works that apply sliding windows to constrain the at-

tention within a fixed range [7, 54]. With sliding windows, the node

pairs in the sequence data can be planned into a linear distribution

(by ignoring node pairs with 𝛿 (𝑖, 𝑗) = 0 or 2𝑃 − 1) and computed

in parallel with matrix partitioning. However, this technique does

not apply to us since the position distribution of relevant nodes

changes with every tree structure, which makes matrix blocking

infeasible. In this section, we present the following 5 alternative

implementations of AST-Trans and discuss the pros and cons:

Mask. Mask out the attention scores where 𝛿𝑅 (𝑖, 𝑗) = 0 after

computing the full attention among all nodes. It has the same qua-
dratic time and space complexity as in the standard Transformer.

Loop. Loop over node pairs where 𝛿𝑅 (𝑖, 𝑗) > 0 and compute the

attention scores. It is memory and computational efficient but does
not support parallel processing.

Sparse.We can store𝛿𝑅 as a sparse tensor 𝑆𝑇 (𝛿𝑅) and deep learn-
ing frameworks, such as Pytorch, can automatically skip operations

with zero elements when multiplying a sparse tensor with a normal

tensor. The mask operation can be optimized (for example, content-

to-position attention scores in Eq 4 can be computed by gathering

𝑄 (𝑥)𝐾𝑃 ⊺
with 𝑆𝑇 (𝛿𝑅)). However, it can only apply to content-to-

position and position-to-content. For content-to-content, we still

have to use theMask or Loop strategy since the production of two

sparse tensors is not directly supported.

Gather with COO (GC). On the basis of Sparse, the content-
to-content computation can be optimized by additional gather op-

erations. The core idea of GC is to put query-key pairs that need to

be computed into one-to-one correspondence, and store them as

dense matrices. Coordinate format (COO) is a common way to store

sparse tensors, where only non-zero elements are stored as tuples of
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Figure 3: Decompose the relative distance matrix 𝛿𝑅 of the tree
“abcd" with max relative distance 𝑃 = 1.

element indices and the corresponding values. Let𝐶𝑂𝑂𝑟𝑜𝑤 /𝐶𝑂𝑂𝑐𝑜𝑙

denotes the list of row/column indexes, and 𝐶𝑂𝑂𝑣𝑎𝑙 denotes the

list of values in the COO format of 𝛿𝑅 . We then use them as indexes

to gather the query and key of content as:

𝑄𝑟𝑜𝑤 = 𝑄 (𝑥) [𝐶𝑂𝑂𝑟𝑜𝑤 ; :];𝐾𝑐𝑜𝑙 = 𝐾 (𝑥) [𝐶𝑂𝑂𝑐𝑜𝑙 ; :]

𝑄𝑃
𝑣𝑎𝑙

= 𝑄𝑃 [𝐶𝑂𝑂𝑣𝑎𝑙 ; :];𝐾𝑃
𝑣𝑎𝑙

= 𝐾𝑃 [𝐶𝑂𝑂𝑣𝑎𝑙 ; :]
By this way, each column in the query content𝑄𝑟𝑜𝑤 corresponds to

the same column in the key content 𝐾𝑐𝑜𝑙 . Then we can use matrix

dot production to compute attention scores:

𝛼𝑐𝑜𝑜 = 𝑄𝑟𝑜𝑤 ⊙ 𝐾𝑐𝑜𝑙 +𝑄𝑟𝑜𝑤 ⊙ 𝐾𝑃
𝑣𝑎𝑙

+𝑄𝑃
𝑣𝑎𝑙

⊙ 𝐾𝑐𝑜𝑙
where ⊙ indicates dot production. 𝛼𝑐𝑜𝑜 is a vector and corresponds

to the non-zero values in 𝛼 (Eq. 4), and 𝛼 [𝐶𝑂𝑂𝑟𝑜𝑤 [𝑖];𝐶𝑂𝑂𝑐𝑜𝑙 [𝑖]] =
𝛼𝑐𝑜𝑜 [𝑖]. The content-to-position or position-to-content can be com-

puted the same as in Sparse, and the total number of gather opera-

tions in attention computation is 4 times of non-zero elements in

𝛿𝑅 : 2 for gathering the content and 2 for gathering the position.

Gather with decomposed COO (GDC). To reduce the number

of gather operations in GC, we can add a matrix decomposition

operation on top of it. First, we decompose 𝛿𝑅 by𝐶𝑂𝑂𝑣𝑎𝑙 such that

each sub-matrix 𝛿𝑠
𝑅
contains only node-pairs with the same relative

distance 𝑠 . An example is shown in Figure 3, where the original 𝛿𝑅
contains 3 distinct values and we decompose it into 3 sub-matrices

accordingly. We transfer each sub-matrix 𝛿𝑠
𝑅
into its COO format

and use 𝐶𝑂𝑂𝑠
to indicates the sub-matrix with 𝑣𝑎𝑙 = 𝑠 . For each

sub-matrix 𝐶𝑂𝑂𝑠
, we gather content embeddings of nodes by:

𝑄𝑟𝑜𝑤𝑠
= 𝑄 (𝑥) [𝐶𝑂𝑂𝑠

𝑟𝑜𝑤 ; :], 𝐾𝑐𝑜𝑙𝑠 = 𝐾 (𝑥) [𝐶𝑂𝑂𝑠
𝑐𝑜𝑙

; :]
where 𝑄𝑟𝑜𝑤𝑠

indicates the query content ordered by 𝐶𝑂𝑂𝑠
𝑟𝑜𝑤 , and

𝐾𝑐𝑜𝑙𝑠 represents the key content ordered by 𝐶𝑂𝑂𝑠
𝑐𝑜𝑙

. The attention

scores can then be computed as:

𝛼𝑐𝑜𝑜𝑠 = (𝑄𝑟𝑜𝑤𝑠
+𝑄𝑃

𝑠 ) ⊙ (𝐾𝑟𝑜𝑤𝑠
+ 𝐾𝑃

𝑠 ) − (𝑄𝑃
𝑠 ⊙ 𝐾𝑃

𝑠 )
where 𝛼𝑐𝑜𝑜𝑠 corresponds to the attention scores of node pairs in

𝛿𝑠
𝑅
. Note that 𝛼𝑐𝑜𝑜𝑠 is a vector of the same shape as 𝐶𝑂𝑂𝑠

𝑟𝑜𝑤 . By

padding all 𝐶𝑂𝑂𝑠
to the same length, the attention scores can be

computed in parallel and the final attention scores equal to the sum

of all 𝛼𝑐𝑜𝑜𝑠 :

𝛼𝑐𝑜𝑜 =

2𝑃+1∑
𝑠=1

𝛼𝑐𝑜𝑜𝑠

There are 3 benefits of this approach compared with GC:
• 𝐾𝑃

and𝑄𝑃
can be reused, as each𝑄𝑟𝑜𝑤𝑠

and 𝐾𝑟𝑜𝑤𝑠
have the

same relative distance 𝑠 . The position embeddings of 𝑠 can be

directly added into the content without gather operations.

• Only a quarter of number of gather operation is needed

(discussed in 5.3).

• Only one dot production is required, as the second 𝑄𝑃
𝑠 ⊙ 𝐾𝑃

𝑠

can be reused and only (𝑄𝑟𝑜𝑤𝑠
+𝑄𝑃

𝑠 ) ⊙ (𝐾𝑟𝑜𝑤𝑠
+𝐾𝑃

𝑠 ) needs
to be calculated.

See Appendix A for the complete algorithm.

5 COMPLEXITY ANALYSIS
In this section, we will discuss the best, worst and average complex-

ity of 5 implementations mentioned above. We use FLOPs (floating

point operations) to measure the computational complexity. The

considered operations includes: matrix multiplication, matrix dot

production, add and gather operationwhich are themain operations

involved for the attention computation. FLOPs of these operations

are listed below:

𝐹𝐿𝑂𝑃𝑠 (𝐴 + 𝐵) = 𝑁 (𝑚 − 1); 𝐹𝐿𝑂𝑃𝑆 (𝐴[𝐶; :]) = |𝐶 | ∗𝑚
𝐹𝐿𝑂𝑃𝑠 (𝐴 ⊙ 𝐵) = 𝑁𝑚2 + 𝑁 (𝑚 − 1)
𝐹𝐿𝑂𝑃𝑠 (𝐴 × 𝐵⊺) = 𝑁 ∗ 𝐹𝐿𝑂𝑃𝑠 (𝐴 ⊙ 𝐵)

(7)

where𝐴 and 𝐵 are twomatrices with shape [𝑁,𝑚],𝐴[𝐶 ; :] indicates
gather 𝐴 with 𝐶 as the index, |𝐶 | is the number of elements in 𝐶 .

We will focus our analysis on attention heads using the ancestor-

descendent relationship (𝐴), but similar ideas can be used to analyze

the sibling relationship (𝑆) straightforwardly. As the complexity is

related to the number of non-zero elements in 𝛿𝐴 (denoted with

|𝛿𝐴 > 0|). We first analyze the range of |𝛿𝐴 > 0|, then present the

complexity of each implementation.

5.1 Range of |𝛿𝐴 > 0|
Theorem 5.1. For any directed tree𝑇 , let E(i) represent the number

of paths in 𝑇 with length 𝑖 , 𝐿 represent the length of the longest path
in 𝐺 , we have:

𝐸 (1) > 𝐸 (2) > · · · > 𝐸 (𝐿)

Proof. Assuming there are 𝑁 nodes in the tree, and the root

node is at level 1. Define 𝑁 𝑗 as the number of nodes at level 𝑗 . For

each node at level 𝑗 , if 𝑗 − 𝑖 > 0, there exists one path of length

𝑖 ending with this node, otherwise no such path exists. Hence,

𝐸 (𝑖) = 𝑁 −∑𝑖
𝑗=1 𝑁 𝑗 and 𝑁 𝑗 > 0. Therefore we must have 𝐸 (𝑖) >

𝐸 (𝑖 + 1). □

Theorem 5.2. Every tree with 𝑁 nodes has exactly 𝑁 − 1 edges.

Proof. Imagine starting with𝑁 isolated nodes and adding edges

one at a time. By adding one edge, we will either (1) connect two

components together, or (2) close a circuit. Since a tree is fully

connected and has no circuit, we must add exactly 𝑁 − 1 edges. □

Least upper & Greatest lower bound. Let 𝐸 (0) = 𝑁 denote

the number of nodes in a tree. We have |𝛿𝐴 > 0| = 𝐸 (0) + 2(𝐸 (1) +
𝐸 (2) + . . . 𝐸 (𝑃)) since we consider both positive and negative dis-

tance in 𝛿𝐴 . Based on the above two theorems, we can have:

𝐸 (𝑖) ≤ 𝐸 (𝑖 − 1) − 1 ≤ . . . 𝐸 (0) − 𝑖 = 𝑁 − 𝑖
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Figure 4: |𝛿𝐴 > 0 | in case of random trees, the abscissa is the max
relative distance 𝑃 and the ordinate is the non-zero elements in 𝛿𝐴

with the unit of𝑂 (𝑁 ) . The coefficient decreases with growing 𝑃 .

|𝛿𝐴 > 0| ≤ 𝑁 + 2(𝑁 − 1 + 𝑁 − 2 + . . . 𝑁 − 𝑃) = (𝑁 − 𝑃) (2𝑃 + 1)
It is the least upper bound for the ancestor-descendent relationship

and is achieved only when each node has strictly one child node.

The greatest lower bound can be achieved when the tree’s depth is

2. In this situation, 𝐸 (𝑖) = 0 for 𝑖 ≥ 2 and |𝛿𝐴 > 0| = 3𝑁 − 2.

Average.We can use the Prüfer sequence [35] to simulate ran-

dom trees so we can estimate the average of |𝛿𝐴 > 0| with different

tree structures. The tree size 𝑁 is set in the range of [50, 500] and
the out-degree of each node is randomly selected from 1 to 𝑁 − 1

(controlled by the max value in Prüfer sequence). We did 1,000

simulation experiments and Figure 4 shows the result.

The average |𝛿𝐴 > 0| when 𝑃 is sampled from a uniform distri-

bution in [1, 50] is 1.16𝑃𝑁 . We can see that the coefficient in Figure 4
gradually decreases. For larger 𝑃 , the average |𝛿𝐴 > 0| will be much

smaller than the upper bound of (2𝑃 + 1) (𝑁 − 𝑃).

5.2 Mask & Loop & Sparse & GC
Mask contains 1 matrix multiplication with [𝑁,𝑚] × [𝑚, 𝑁 ] in
content-to-content, 2 matrix multiplication with [𝑁,𝑚]×[𝑚, 2𝑃+1]
and 2 gather operations with index shape [𝑁, 𝑁 ] for content-to-
position and position-to-content, and 2 add operations are used

for final score computation. The complexity is (𝑁 2 + (2𝑃 + 1)𝑁 ) ∗
(𝑚2 +𝑚 − 1) + 2𝑁 2 + 𝑁 − 1.

Loop As loop only computes non-zero elements in 𝛿𝐴 , the com-

plexity includes 1 dot production of |𝛿𝐴 > 0| (𝑚2 +𝑚 − 1) and 2 add
operations |𝛿𝐴 > 0| ∗ 2(𝑚− 1), and equals to |𝛿𝐴 > 0| (𝑚2 + 3𝑚− 3).
Sparse’s complexity is same as Mask apart from the gather opera-

tion with index shape |𝛿𝐴 > 0| (the time complexity for gathering

sparse tensor as index equals to the number of non-zero elements in

it), which equals to (𝑁 2+(2𝑃+1)𝑁 )∗ (𝑚2+𝑚−1)+2|𝛿𝐴 > 0|+𝑁 −1.
GC The complexity in GC is all related to |𝛿𝐴 > 0|. It contains 4
gather operations, 3 dot production and 2 add operations, which

leads to the complexity of |𝛿𝐴 > 0| (𝑚2 + 3𝑚 + 4) + 2(2𝑃 + 1)𝑁𝑚.

5.3 GDC
There are two implementation details in GDC to optimize the time

and space complexity. Firstly, in a tree, if 𝑠 ≥ 𝑃 + 1, the decomposed

sub-matrix 𝐶𝑂𝑂𝑠
has at most one non-zero value in each row.

(for example, each non-root node has exactly one parent node in

Figure 3.) We can fix 𝐶𝑂𝑂𝑠
𝑟𝑜𝑤 to [0, 1, . . . , 𝑁 − 1] and only store

the corresponding 𝐶𝑂𝑂𝑠
𝑐𝑜𝑙

. When 𝑠 < 𝑃 + 1, as the relationship is

symmetric, 𝐶𝑂𝑂𝑠
can be represented with 𝐶𝑂𝑂2𝑃+2−𝑠

. Based on

this, when 𝑠 ≥ 𝑃 +1, the query content does not need to be gathered

Co
mp
le
xi
ty

/
FL
OP
s

Best Worst

Size of AST

Avg

Figure 5: Theoretical complexity with 𝑃 = 5,𝑚 = 32. loop has the
lowest complexity but cannot be parallelized in practice.

Table 2: Statistics of Java and Python Datasets

Perspectives Java Python

# of Train instances 69,708 55,538

# of Validation instances 8,714 18,505

# of Test instances 8,714 18,502

Avg. # of tokens in code 120 48

Avg. # of nodes in AST 158 100

Avg. # of tokens in SBT 632 402

Avg. # of tokens in summary 18 9

(as𝐶𝑂𝑂𝑠
𝑟𝑜𝑤 is the same index of query), and when 𝑠 < 𝑃 +1, the key

content does not need to be gathered. Hence, we only need (2𝑃+1)𝑁
gather operations from content. Secondly, padding positions do not

need to be computed in dot production as the padding positions

of both 𝑄𝑟𝑜𝑤𝑠
and 𝐾𝑟𝑜𝑤𝑠

are the same. After adding the position

bias, all𝑄𝑟𝑜𝑤𝑠
and𝐾𝑟𝑜𝑤𝑠

can be packed before dot production, then

unpacked to their original length afterwards. By this way, we only

need to compute related node pairs with one dot production.
In consequence, the complexity of GDC includes (2𝑃 + 1)𝑁𝑚

gather operations, 1 dot production with shape [|𝛿𝐴 > 0|,𝑚] and
3 add operations with shape [|𝛿𝐴 > 0|], which equals to |𝛿𝐴 >

0| (𝑚2 +𝑚 − 1) + (6𝑃 + 3)𝑁𝑚 + (2𝑃 + 1)𝑁 .

For better comparison, we also show the theoretical complexity

in Figure 5 under the hyper-parameters in our experiments. As can

be seen, loop has the lowest complexity but cannot be parallelized.
mask and sparse grow quadratically with the AST size. GDC
slightly outperforms GC and has a complexity close to loop.

6 EXPERIMENTS
In this section, we first explain the experimental setup, evaluation

metrics and baseline approaches, then report the main results and

perform ablation studies. The runtime speed and memory cost of

different implementations are provided for comparison. Finally, we

present a qualitative analysis and discuss the future directions.

6.1 Experimental Setup
Datasets. Experiments are conducted on the two public code sum-

marization benchmarks, one in Java [19] and the other in Python [51].

To ensure the quality of comments, we filter the comments with

less than 4 words, constructors, setters, getters, and tester methods,

same as in Shido et al. [41]. When the comment has two or more

sentences, only the first sentence is kept as the description of the
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Table 3: Comparison of AST-Trans with the baseline methods, categorized based on the input type. * means implemented by ourselves.

Methods Input

Java Python

BLEU (%) METEOR (%) ROUGE-L (%) BLEU (%) METEOR (%) ROUGE-L (%)

CODE-NN[20]

Code

27.6 12.61 41.10 17.36 09.29 37.81

API+CODE[19] 41.31 23.73 52.25 15.36 08.57 33.65

Dual Model[53] 42.39 25.77 53.61 21.80 11.14 39.45

BaseTrans*[1] 44.58 29.12 53.63 25.77 16.33 38.95

Code-Transformer*[57] 45.74 29.65 54.96 30.93 18.42 43.67

Tree2Seq[11]

AST(Tree)

37.88 22.55 51.50 20.07 08.96 35.64

RL+Hybrid2Seq[51] 38.22 22.75 51.91 19.28 09.75 39.34

GCN*[22] 43.94 28.92 55.45 32.31 19.54 39.67

GAT*[50] 44.63 29.19 55.84 32.16 19.30 39.12

Graph-Transformer*[40] 44.68 29.29 54.98 32.55 19.58 39.66

Code2Seq*[4]

AST(PD)

24.42 15.35 33.95 17.54 08.49 20.93

Code2Seq(Transformer)* 35.08 21.69 42.77 29.79 16.73 40.59

DeepCom[18]

AST(SBT)

39.75 23.06 52.67 20.78 09.98 37.35

Transformer(SBT)* 43.37 28.36 52.37 31.33 19.02 44.09

AST-Trans(SBT)* 44.15 29.58 54.73 32.86 19.89 45.92

Transformer(POT)*

AST(POT)

39.62 26.30 50.63 31.86 19.63 44.73

AST-Trans 48.29 30.94 55.85 34.72 20.71 47.77

Figure 6: Distribution of relative distance 𝑝 in training sets

method. Table 2 shows the statistics of the datasets. We also count

the distribution of relative distances in Fig 6. As can be seen, most

ancestor-descendent and sibling relationships are within the range

of 5 and 10 respectively.

Pre-processing. First, we pre-process the summaries by removing

the punctuations. Next, we split multi-words, such as “gettable-

types", in summaries with wordninja
3
since their corresponding

tokens in the source code are split too [53]. We also split the leaf

nodes in ASTs into sub-tokens if they are in form of the CamelCase

or snake_case. The split nodes are treated as new children of the

original parent node. Finally, we reverse the children of the root

node to prevent the important information, such as function names

or parameters, from being cut when the size of input AST exceeds

the maximum size allowed.

Hyper-parameters. If not specified, the maximum size of AST

is set to 200 for all experiments, and the vocabulary sizes of both

ASTs and comments are set to 30, 000. We use 4 layers of stacked

encoder-decoder and set the hidden size 𝑑 = 256,𝑚 = 32. For

each attention layer, we set ℎ𝐴 = 1 and ℎ𝑆 = 7. The max relative

distance for ancestor-descendant/sibling relationship 𝑃𝐴 is set to

10/5 respectively. Feed-forward inner-layer dimension is 2048 and

the activation function is gelu [17]. While training, the batch size is

128 and the maximum epochs is 500. Models are trained using the

3
https://github.com/keredson/wordninja

AdamWoptimizer [28] with 𝑙𝑟 = 1𝑒−3, 𝛽1 = 0.9, 𝛽2 = 0.999,𝜃 = 1𝑒−
6, label smoothing with 𝜃𝑙𝑠 = 0.1 [46] and dropout probability [44]

of 0.2. The patience in the early stopping mechanism [32] is set to

20 and we select the model based on the BLEU in the validation set

4
.

Evaluation Metrics. We evaluate the performance with corpus

BLEU [33], METEOR [6], and ROUGE-L [27].

The experiments used the GPUs provided by Aliyun, which use

EFLOPS [9] architecture and ACCL [10]. EFlops architecture im-

proves the scalability and efficiency of commodilty clusters (CoW),

and ACCL bring the performant efficiency of EFlops architecture

to general cluster systems and Cloud scenarios.

6.2 Baselines
We compare the proposed AST-Transformer with 16 baseline meth-

ods. They can be divided into 5 groups based on the input type:
1: Code.Models with the code as input. It treats code as plain

text and does not leverage ASTs. Code-NN [20] used RNN while

BaseTrans [1] used the Transformer. On the basis of Code-NN,

Dual Model[53] used dual learning to train code summarization

and generation together. API+CODE [19] used multi encoders

to encode code along with the API call sequence. To make up

for the lack of structural information, Code-Transformer [57]

additionally adds four structure distances, including two kinds of

distance mentioned in Sec 3.2, to the code tokens and does attention

computation separately for each kind of distance. Differently, it

does not distinguish embeddings of different relations and uses sine

and cosine functions to represent distance embeddings.

2: AST(Tree).Models with the AST as input and encode it with

tree-specific encoders. There are two main types of such encoders.

One uses Tree-LSTM, such asTree2Seq [11] andRL+Hybrid2Seq [51].

RL+Hybrid2Seq adds the code information and deep reinforce-

ment for training. The other treats the AST as graph and encodes

4
We also report the results with best METEOR and ROUGE-L in the validation set in

Appendix B
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it with graph neural network (GNN) models. We consider three

kinds of GNN models including GCN [22], GAT[50] and Graph-
Transformer [40]. The edges fed to GNN includes the ancestor-

descendant and sibling edges, distinguished by the edge attributes.

3: AST(PD).Models with the AST linearized with path decom-

position as input. Path representation needs to be encoded from

the nodes, then the whole AST representation is encoded from

the path representations. Code2Seq [4] is the first approach us-

ing PD, and it used two LSTM models to encode hierarchical net-

works. For fairness of comparison, we also design a new baseline

Code2Seq(Transformer) by replacing these two LSTM models

with the Transformer.

4: AST(SBT). Models with the AST linearized with Structure-

based Traversal as input. DeepCom [18] is the first work that uses

AST (SBT) as input, which encodes it with LSTM. We design a new

baseline Transformer (SBT) that encodes AST (SBT) with the

Transformer. AST-Trans(SBT) is our proposed model that inputs

SBT with relationship matrices.

5: AST(POT).Models with the AST linearized with pre-order-

traversal as input. Transformer (POT) is the standard Trans-

former architecture with AST (POT) as input and AST-Trans is
our proposed model with tree-structured attention.

All Transformer-based models are based on the relative position

embeddings with disentangled attention mentioned in Section 3.3

with the same number of parameters. The same hype-parameters are
used through the way for a fully fair comparison.

6.3 Main Results
The main result of AST-Trans and the baselines are presented in

Table 3
5
. AST-Trans outperforms all the baselines on all the three

metrics. Specifically, it outperforms the best baseline by 3.61, 2.17

in BLEU, 1.65, 1.08 in METEOR and 0.87, 3.04 in ROUGE-L on the

Java and Python datasets respectively.

Code vs AST (Tree) vs AST (linearized). Apart from AST-

Trans, on both two datasets, using GNNs to encode AST (Tree) achieved
the best results. The reason is that the AST has both structural and

semantic information, and the other two input types both lose part

of the structural information. All three variants of GNNs achieve

similar results and outperform the Tree-LSTM in encoding the AST

(Tree). Compared with taking the linearized AST as input, models
only using the code perform better on the Java dataset but worse on
the Python dataset. This could be related to the code length. As code
and corresponding ASTs in Python are relatively shorter, encoding

ASTs is more effective than in the Java dataset. Therefore, mod-

els using linearized ASTs, with the help of additional structural

information, are able to outperform models using only the code.

AST(PD) vs AST(SBT) vs AST(POT). Among three lineariza-

tion methods, when using the Transformer encoder/decoders, AST
(SBT) performs the best on the Java dataset and AST (POT) performs
the best on the Python dataset. AST(SBT) and AST(POT) both have

their own advantages. AST(SBT) maintains more structural infor-

mation than AST(POT) while AST(POT) has the shortest length

5
The results of BaseTrans [1] in the Python dataset are lower than reported in the paper

(-6.75 BLEU, -3.44 METEOR and -7.78 ROUGE), then we set max relative distance 𝑃 to

16 (kept the same as original paper) and get 27.27(-5.25) BLEU, 15.90(-3.87) METEOR,

38.58(-8.15) ROUGE-L. This reduction may be because that we additionally segment

multi-words in comments.

Table 4: Ablation study on AST-Trans with/without 𝐴 and 𝑆 .

Model Dataset BLEU (%) METEOR (%) ROUGE (%)

AST-Trans w/o A

Java

47.74 30.21 54.56

AST-Trans w/o S 48.07 30.62 55.29

AST-Trans 48.29 30.94 55.85
AST-Trans w/o A

Python

34.35 20.15 46.62

AST-Trans w/o S 34.32 20.28 46.87

AST-Trans 34.72 20.71 47.77

Table 5: Ablation study on ℎ𝐴 and ℎ𝑆 on Java Dataset.

ℎ𝐴 ℎ𝑆 BLEU (%) METEOR (%) ROUGE-L (%)

0 8 47.74 30.21 54.56

1 7 48.29 30.94 55.85
2 6 48.28 30.94 55.64

3 5 48.25 30.92 55.66

4 4 48.23 30.96 55.68

5 3 48.11 30.93 55.46

6 2 48.1 30.74 55.22

7 1 48.24 30.91 55.57

8 0 48.07 30.62 55.29

among these three linearization methods. Using the AST (PD) as
input leads to poor performance on both datasets. There are two main

reasons. On the one hand, AST(PD) method was first proposed for

method name completion. Method names are much shorter than the

code summaries, and do not include many details. PD linearization

extracts features from paths, which aggregates high-level charac-

ters but ignores the detailed information in the node. However, code

summarization requires more detailed information in the code such

as the type of the return value, which is stored in the leaf nodes. On

the other hand, Code2Seq(Transformer) uses a hierarchical network

and the amount of trained parameters is much larger. It is thereby

harder to converge than Transformer(SBT) and Transformer(POT).

Impact of relationship matrix 𝑅. We compared the perfor-

mance of three kinds of inputs with or without the relation matrix 𝑅:

Code-Transformer vs BaseTrans, AST-Trans (SBT) vs Transformer

(SBT) and AST-Trans (POT) vs Transformer(POT). Results show

that adding 𝑅 improves the performance for all these inputs and AST-
Trans (POT) performs the best. This is because Code-Transformer

ignores non-leaf node information, and AST-Trans (SBT) stores

duplicate information, resulting in too long sequence length. AST-

Trans (POT) maintains a short sequence length without losing

necessary structural or semantic information.

AST-Trans vs GNN. AST-Trans outperforms GNNs, the best-
performed baseline model in both datasets. With the help of rela-

tionship matrix, AST-Trans includes additional relative distance

information. Nodes can perceive information from its 𝑝-distance

neighbors at each layer. For GNN, however, each node needs 𝑝

hops to propagate information from these neighbors. In addition,

AST-Trans uses multi-head mechanism to compute different rela-

tionships in different heads, while all relationships, distinguished by

edge attribute, are calculated together in GNNs. AST-Trans also uses

extra feed-forward layers and residual connections in the encoder,

which could help improve the model generalization.
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Table 6: Ablation study on 𝑃𝐴 and 𝑃𝑆 on Java Dataset.

𝑃𝐴 𝑃𝑆 BLEU (%) METEOR (%) ROUGE-L (%)

0 0 36.34 23.83 45.58

1 1 46.95 30.33 54.24

5 1 47.45 30.11 54.28

5 3 47.82 30.29 54.62

5 5 48.14 30.77 55.45

10 5 48.29 30.94 55.85

Table 7: Ablation study on the number of layers on Java Dataset.

𝑛𝑢𝑚 BLEU (%) METEOR (%) ROUGE-L (%)

1 46.11 29.36 53.07

2 47.68 30.53 54.97

3 47.41 30.04 54.07

4 48.29 30.94 55.85
5 47.8 30.39 54.61

6 48.31 30.58 55.09

6.4 Ablation studies
We conducted ablation studies on four hyper-parameters: use of

each relationship, number of heads used for ancestor-descendant

(ℎ𝐴) and sibling relationships (ℎ𝑆 ), max relative distance 𝑃 and the

number of layers. In every study, apart from the hype-parameter

that needs to be analyzed, we keep the rest settings unchanged.

Use of two relationships. We verified the impact of using

ancestor-descendant or sibling relationship separately in Table 4.

Results show that the performance is achieved when using them

all. However, using one of the relationships alone can already achieve
close results and outperform all previous baselines.

Number of attention heads. We change the number of heads

used for the ancestor-descendant relationship ℎ𝐴 from 0 to 8 and fix

the total number of heads to 8. As can be seem from Table 5, the best

performance is obtained with ℎ𝐴 = 1 and ℎ𝑆 = 7, but there is no

significant difference among all combinations of ℎ𝐴 and ℎ𝑆 . Even

when one relationship is missing (ℎ𝐴 = 0 or ℎ𝑆 = 0), the effects

are still marginal. However, when both relationships are removed
ℎ𝐴 = ℎ𝑆 = 0, the performance drops a lot. We conjecture that this

phenomenon is related to the characteristics of AST. Knowing about

one relationship can help the model “guess" the other relationship

properly. For example, the node “Compare" can be the child node of

“WhileExp”, “IFExp” or “SwitchExp”, etc, but when it is the sibling

of node “Case”, it can only be the child of node “SwitchExp”. The

information about its parent can be “guessed" in attention compu-

tation with its sibling “Case”. Similarly, node “NameStore” can only

appear on the left side of a statement, and nodes with the same

parent as it must be its right siblings. Messages of these siblings can

be passed to “NameStore” through their common parent. However,

there are many cases that the “guess" will not be successful. For

example, statements 𝑎 > 𝑏 and 𝑏 > 𝑎 have the same child nodes

and can only be distinguished by sibling relationship, while state-

ments 𝑎 = 𝑏 + 𝑎;𝑏 = 𝑏 − 𝑎 and 𝑏 = 𝑏 − 𝑎;𝑎 = 𝑏 + 𝑎 only differ in

ancestor-descendant relationship. It could be that the testset does
not have enough hard examples that need this fine-grained distinction
or the current metrics are not enough to reflect the difference.

Time Memory

Size of AST

ms
/b
at
ch

Mi
B

Figure 7: Runtime and memory cost of five implementations with
batch size=16. The cost of the mask implementation is equal to the
standardTransformer,which grows quadraticallywith theAST size.

Max relative distanceWe analyze the impact of the max rela-

tive distance 𝑃 in Table 6 . According to Table 6, the out-degree and

depth of most nodes in AST is in [0, 5] and [0, 10]. Therefore, the

max relative distance of ancestor-descendant (𝑃𝐴) and sibling rela-

tion (𝑃𝑆 ) are selected from [1, 5, 10] and [1, 3, 5] respectively. Results

show that as the relative distance grows, the performance improves

too, suggesting a wider view of nodes in AST relationships is help-

ful. However, the improvement is marginal and even with 𝑃 = 1,
the model performance can already outperform all other baselines.
This might be ascribed to the multi-layer stacked encoders. Even

for 𝑃 = 1, longer-distance nodes can still be attended to indirectly

on upper layers. In practice, 𝑃 can be set as a hyperparameter to

balance the performance-efficiency trade-off.

Number of Layers Finally, we perform ablation study by vary-

ing the number of layers, and the results are presented in Table 7.

In our experiments, we observe that a deeper model (more layers)

performs better, but the improvement saturates after 4 layers.

6.5 Complexity analysis
In Fig 7, We analyzed the rum time and memory usage of different

implementations mentioned in section 4. Different from the theoret-

ical complexity which analyze the attention computation in isolate,
operations in GPU can be computed in parallel, and there are other

factors, e.g. decoder parameters, dependent libraries, vocabulary

embeddings that all need memory usage. Therefore, the need for

computing attention scores is only one part of it and leads to the gap

between Fig 7 and 5, where the difference across implementations

in Fig 7 is much larger. Nevertheless, the trend stays the same. Time

and memory usage of GDC and GC both scale linearly with the

AST size, while the cost of Mask and Sparse grows quadratically.
Even with the batched parallelism in GPUs, the implementation

of mask and sparse are still slower than GDC and GC while re-

quiring significantly more memory cost. GDC is faster and with

less memory usage than GC. The main reason is that GDC uses

one quarter of gather operations compared with GC. Loop shows

a linear growth in memory usage with AST size, but its time cost

is much higher as it does not support parallel operations. When

the AST size grows further, we can expect the difference across

implementations will become larger and larger.
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Figure 8: Heatmaps of relative position representations. x-axis is
the relative position representation and the y-axis is the relative
positions. The variance for the sibling relation (𝑆) is much larger
than that for the ancestor-descendent relation (𝐴).

6.6 Visualization and Qualitative Analysis
Visualization. We further visualize the relative position represen-

tations of ancestor-descendant (𝐴) and sibling (𝑆) relationships in

Fig 8. As can be seen, the variance of relative position embeddings

in 𝑆 is much larger than in 𝐴. It implies that our model is not sensi-
tive to the relative distance between ancestor and descendant nodes,
as the embeddings are almost the same regardless of the positions.

In contrast, the variance for sibling nodes is relatively large, and

the model can distinguish the sibling nodes with different relative

distances. In addition, the relative embeddings in 𝐴 are demarcated

between the upper and lower part, suggesting a clear distinction

between ancestor and descendant nodes. It shows that our model

pays more attention to direction rather than distance in 𝐴. It is likely
that the exact distance between sibling nodes are more important

than that between ancestor-descendant nodes in ASTs.

Qualitative analysis.We provide a couple of examples for qualita-

tive analysis in Table 8. It can be observed that AST-Trans generates

the closest summary to the reference, and lack of 𝐴 or 𝑆 hurts the

quality of summarization. In the first case, the key information is

the connection between the sibling nodes method call (“addAll”)

and parameter (“actions”). Both AST-Trans and AST-Trans w/o 𝐴

generates the summary as a batch add operation, while AST-Trans

w/o 𝑆 misunderstands it as “adds an action”. On the contrary, the

meaning of the third case is to get job by the tag first then delete

it. The order of execution is controlled by the ancestor-descent

relationship (the method call “get” is the child node of “delete”), and

AST-Trans w/o𝐴 just ignores the “get” operation. The summaries of

AST-Trans w/o𝐴 and w/o 𝑆 are both correct in the second case. The

statements of the second case are relatively simple and ignoring

the order of statements will not affect the function comprehension.

7 THREATS TO VALIDITY
There are three main threats to the validity of our evaluation. Firstly,

many public datasets are proposed to explore code summarization.

Table 8: Qualitative examples.

public QuickActionView addActions(Collection <Action> actions){
checkShown();
mActions.addAll(actions);
return this;

}

AST-Trans w/o S: adds a sub - action to the menu

AST-Trans w/o A: adds the given actions to the list of actions

AST-Trans: adds a collection of actions to the quick action view

Human Written: adds a collection of actions to the quick action view

public java.lang.Object newInstance() {
Object o = newInstanceImpl();
if(o == null){

throw new InstantiationException();
}
return o;

}

AST-Trans w/o S: creates a new object initialized to the string object

AST-Trans w/o A: returns a new instance of the object class

AST-Trans: returns a new instance of the object

Human Written: creates a new instance of a class

def job_delete_by_tag(tag):
Job.objects.get(tag=tag).delete()
return (job_get_by_tag(tag) is None)

AST-Trans w/o S: delete a job and return tag

AST-Trans w/o A: delete a job objects

AST-Trans: delete a job based on its tag

Human Written: deletes a job entry based on its tag

We select two widely used ones to evaluate the proposed AST-

Transformer, but they may not be representative of other program-

ming languages. Secondly, to ensure a fair comparison as much as

possible, we build baselines on the top of the same Transformer

architecture. The architecture and hyperparameter choice might be

sub-optimal for certain approaches
6
. Finally, there will be a certain

gap between the automatic evaluation and the manual evaluation

of the summarization results. We select three different automatic

evaluation methods to avoid bias as much as possible.

8 RELATEDWORKS
Code Summarization. Most approaches on code summarization

frame the problem as a sequence generation task and use an encoder-

decoder architecture. The only difference between it and traditional

machine translation is that programming languages are unam-

biguous and follow rigid grammar rules. Most approaches either

treat the source code as natural language (i.e., a sequence of to-

kens without specified structures), or utilize its structural informa-

tion with the help from ASTs or other parsed forms. To encode

the code sequence, there exist many encoder architectures like

CNN [3], RNN [20, 55] and the Transformer [1]. To leverage the

tree-structured AST, tree-based models such as Recursive NN [26],

Tree-LSTM [41, 51] and Tree-Transformer [15, 52], are used to en-

code AST directly. As tree is a special kind of graph, graph-based

approaches [2, 12, 23] can also be used to encode ASTs. Some works

also combine the code token sequence with the AST and observe

improvement [23–25]. Our approach only needs the linearized AST

6
Nevertheless, AST-Trans performs best among all reported results on both datasets.
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and can be built upon the Transformer architecture. More impor-

tantly, it restricts the attention range andmakes it possible to encode

very long AST sequences.

Tree-based Neural Networks. The existing tree-based neural net-
works can be grouped into two categories depending on their inputs:

(1) The models that directly take the tree as input [15, 31, 34, 47].

These models are strongly coupled with the tree structure, and the

calculation process needs to be performed simultaneously with

the tree traversal. Since trees generally have different shapes by

nature, parallization of training these models is non-trivial. (2) The

models that take the sequence(s) extracted from the tree as input,

such as the sampled paths in the tree [4, 21], the traversal sequence

with tree positional embedding [42] or the structure based traver-

sal (SBT) sequence [18]. Taking sampled paths as input is with a

certain degree of randomness and instability, and the method of

tree positional embedding ignores the concept of paths in the tree

(all nodes, even if not related, will participate in the calculation

together). Our method improves from these two methods, which

can be guaranteed that each node exchanges message on and only

on all paths containing it.

9 CONCLUSION
In this paper, we present AST-Trans which can encode ASTs effec-

tively for code summarization. In AST-Trans, each node only pays

attention to nodes which share the ancestor-descendent or sibling

relationships with it. It brings two benefits: (1) the model is given

an inductive bias and will not get lost in the overlong AST sequence,

and (2) it can reduce the computational complexity from quadratic

to linear. The latter makes it possible to encode long code sequence,

e.g., a whole file, which is prohibitively expensive for standard

Transformers. We conduct comprehensive experiments, showing

that AST-Trans achieve SOTA results on two popular benchmarks

while significantly reducing the computational cost.

We believe the basic idea of AST-Trans can also be applied in

other structured data like data dependence and control flow graphs.

The code is made publicly available to benefit the relevant research.

In future work, we plan to improve AST-Trans by incorporating

more features of the code snippet, such as API sequence and node

type, into the self-attention mechanism.
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A ALGORITHM OF GDC

Algorithm 1 Self-Attention with Relationship matrix

Input: Hidden state 𝑯 , COO format of relationship martix 𝐶𝑂𝑂 ,

content functions 𝑸,𝑲 , 𝑽 , relative distance projection matrix

𝑸𝑷 ,𝑲𝑷 , 𝑽 𝑷
.

1: 𝑲𝒄 = 𝑲 (𝐻 ), 𝑸𝒄 = 𝑸 (𝐻 ), 𝑽𝒄 = 𝑽 (𝐻 )
2: for 𝑖 = 0, . . . , 2𝑃 + 1 do
3: for 𝑗 = 0, . . . , 𝑁 − 1 do
4: 𝑸𝒄 [𝑖; 𝑗 ; :] = 𝑸𝒄 [𝑪𝑶𝑶𝒄𝒐𝒍 [𝑖 ∗ 𝑁 + 𝑗]; :]
5: 𝑲𝒄 [𝑖; 𝑗 ; :] = 𝑲𝒄 [𝑪𝑶𝑶𝒓𝒐𝒘 [𝑖 ∗ 𝑁 + 𝑗]; :]
6: 𝑽𝒄 [𝑖; 𝑗 ; :] = 𝑽𝒄 [𝑪𝑶𝑶𝒓𝒐𝒘 [𝑖 ∗ 𝑁 + 𝑗]; :]
7: end for
8: end for
9: �̃� = (𝑸𝒄 + 𝑸𝑷 ) ⊙ (𝑲𝒄 + 𝑲𝑷 ) − 𝑸𝑷 ⊙ 𝑲𝑷

10: �̃� = exp( �̃�√
3𝑑
)

11: for 𝑖 = 0, . . . , 2𝑃 + 1 do
12: for 𝑗 = 0, . . . , 𝑁 − 1 do
13: �̃�𝒔𝒖𝒎 [:; 𝑪𝑶𝑶𝒓𝒐𝒘 [𝑖 ∗ 𝑁 + 𝑗]]+ = �̃� [𝑖, 𝑗]
14: end for
15: end for
16: �̃� = �̃�

�̃�𝒔𝒖𝒎

17: for 𝑖 = 0, . . . , 2𝑃 + 1 do
18: for 𝑗 = 0, . . . , 𝑁 − 1 do
19: �̃� [𝑪𝑶𝑶𝒓𝒐𝒘 [𝑖 ∗𝑁 + 𝑗]; :] = (𝑽𝒄 [𝑖; 𝑗 ; :] +𝑽 𝑷 [𝑖; :]) · �̃� [𝑖, 𝑗]
20: end for
21: end for
Output: �̃�

For better re-implementation, we also show the algorithm of

GDC. line 1-10 describes the attention score computation process.

𝑄𝑐 , 𝐾𝑐 and𝑉𝑐 are reshaped to [2𝑃 + 1, 𝑁 , 𝑑]. Note that the attention

Table 9: Comparison of AST-Trans with different model selection
strategy on Java Dataset.

Model BLEU METEOR ROUGE-L

AST-Trans(best_eval_BLEU) 48.29 30.94 55.85

AST-Trans(best_eval_METEOR) 47.02 31.90 55.72

AST-Trans(best_eval_ROUGE-L) 46.92 29.99 57.01

scores 𝛼 have a different shape with traditional attention scores,

so we redesigned the softmax function in line 11-16. The atten-

tion scores belonging to the same query vector, distinguished by

𝐶𝑂𝑂𝑟𝑜𝑤 [𝑖 ∗ 𝑁 + 𝑗], are added together as 𝛼𝑠𝑢𝑚 . Then the softmax

function can be formed as 𝛼 divide by 𝛼𝑠𝑢𝑚 . Finally in line 17-21,

relative distance bias 𝑉 𝑃
is added to the value context, and then is

multiplied with the attention scores 𝛼 .

B THE INFLUENCE OF MODEL SELECTION
STRATEGY

The results reported in the paper come from the model with best

BLEU score in the validation dataset. We then separately select

two other models with the best METEOR, and ROUGE-L score

in the valid dataset, and then evaluate their performances on test

dataset. Results in Table 9 show that the model selection strategy

indeed influences the performance. This may explain why that the

improvement of AST-Trans is inconsistent in different metrics.


